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ABSTRACT 
This paper presents work in progress on the automatic 
detection of prosodic prominence in continuous speech. 
Prosodic prominence involves two different phonetic 
features: pitch accents. connected with fundamental 
frequency (PO) movements and syllable overall energy, 
and stress, which exhibits a strong correlation with 
syllable nuclei duration and high-frequency emphasis. By 
measuring these acoustic parameters it is possible to build 
an automatic system capable of correctly identifying 
prominent syllables with an agreement with human-tagged 
data comparable with the inter-human agreement reported 
in the literature. These results were achieved without using 
any information apart from acoustic parameters. 

1 INTRODUCTION 
The study of prosodic phenomena in speech is a central 
topic in language investigation. Speahers tend to focus the 
listener‘s attention on the most important parts of the 
message. marhing them by means of such phenomena. As 
outlined in Bechman & Venditti [4], a precise 
identification of such phenomena helps to disambiguate 
the meaning of some utterances. It is also a fundamental 
step for the automatic recognition of spontaneous speech. 
and enhances the fluency and adequacy of automatic 
speech-generation systems. Moreover the construction of 
large annotated language resources, such as prosodically 
tagged speech corpora. is of increasing interest both for 
research purposes and for language teaching. 

One of the most important prosodic features is 
prominence: a word or part of a word made prominent is 
perceived as standing out from its environment [23]. A 
better understanding of how prominence is physically 
acconiplished is a basic step in the construction of tools 
capable of automatically identifying such phenomena. 

This paper presents work in progress on the 
construction of a system for the automatic detection of 
prosodic prominence features in speech using only 
acoustic/phonetic parameters and cues. 

Following Bechinan’s [3] phonological view. further 
developed by Bagshaw [ l ,  21, syllables that are perceived 
as prominent either contain a pitch accent or are somehow 
“stressed”. On the acoustic/phonetic side, the 
accomplishment of such features has to he strictly 
correlated with acoustic parameters. As well as the works 
already cited. there are many studies [15, 16, 171. 
suggesting that some of the main acoustic correlates of 
prominence are pitch movements (strictly connected with 
fundamental frequency - FO), overall syllable energy, 
syllable duration and spectral emphasis. 

The work presented here is divided into two separate 
steps: the first step involves the automatic identification of 
syllable-nuclei boundaries to reliably measure the duration 
feature. while the second one concerns the identification of 
prominent syllables by means of acoustic measurements. 
This paper will report on the first experiments conducted 
nn the whole system. 

The data set used in these experiments is a subset of the 
DARPAiTlMIT acoustic-phonetic continuous speech 
corpus, consisting of thousands of transcribed, phone- 
segmented and aligned sentences of American English. In 
this study the TIMIT annotations are used only for 
measuring the system performances, not for prominence 
detection. 

Several studies have been conducted in this field for 
building automatic systems capable of reliably identifying 
either one acoustic correlate of prominence [5 ,  71 or a 
complete set of prosodic parameters [2,6,24]. These latter 
studies, involved in the construction of a complete prosody 
identification system, rely on additional phonetic 
information such as phone labelling and/or utterance 
transcriptions. 

Despite the quantity and quality of studies on this 
topic. it seems that the automatic and reliable detection of 
prosodic pronunence, without providing phonetic 
information, is still an open question. 

2 THE ACOUSTIC PARAMETERS 
In the following subsections, each acoustic parameter 
involved in this study is considered. All acoustic 
parameters must he normalised to some extent to avoid the 
natural variations among different speakers. The specific 
normalisation procedures applied to each parameter will 
be described. 

2.1 Duration 
The linguistic theories of prosodic prominence listed 
above tend to consider syllable duration as one of the 
fundamental acoustic parameters for detecting syllable 
stress. Unfortunately the autnmatic segmentation of the 
utterance into syllables is a complex task; in 191 we can 
find a survey of syllable segmentation algorithms. None of 
these methods seem to perform well when applied to 
continuous speech. For these reasons, an altemative 
duration measure for prosodic prominence detection 
should be introduced. 

One possible measure seems to be the duration of 
syllable nucleus. Considering some utterances taken from 
the TIMIT corpus and comparing the duration of the 
syllable nucleus with the duration of the entire syllable, 
with respect to prominence, and approximating the 
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logarithm of these measures with a gaussian distribution, it 
is possible to obtain the distributions in figure 1. The two 
sets of distributions look qualitatively very similar and the 
separation between the two classes remains almost the 
same using the two measures. Moreover, building two 
gaussian discriminators using the distributions in figure 1 
and classifying a set of test syllables with them, with 
respect to prominence, we obtain almost the same ratio of 
correct classifications. The exact classification 
performance is not important in this context as this 
duration measure is only one parameter useful to build the 
prominence detector. The relevant conclusion, interesting 
for this study, is that we can reliably substitute the syllable 
duration measure, rather difficult to obtain with automatic 
procedures, with the measnre of syllable nucleus duration, 
that can be automatically obtained more easily. 

' NmRai-'ts-- 
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Figure 1: Gaussian approximation of duration measures: 
whole syllable (top) and syllable nucleus (bottom). 

Using a modified version of the convex-hull algorithm 
[lo] applied on the utterance energy profile in the hand 
300-9OOHz as suggested in [9] ,  it is possible to reliably 
identify the syllable nuclei in the utterance and measure 
their duration to obtain the acoustic parameter needed for 
subsequent computations. This duration parameter is 
normalised, considering the mean duration of the syllable 
nuclei in the utterance. This is a standard technique for 
ROS (Rate-Of-Speech) normalisation, as described in [l I]. 

2.2 Energy 
The second acoustic parameter is syllable nucleus energy. 
It can be computed in various ways. Here I refer to RMS 

energy. The nucleus energy is normalised dividmg it by 
the mean energy over the utterance. This reduces the 
energy variation across different utterances and different 
speakers. 

2.3 Fundamental frequency (FO) contour 
The extraction of FO contour, or pitch contour, is typically 
a complex task. Bagshaw [2] carried out an accurate 
comparison of the different algorithm for fundamental 
frequency estimation. Most of the complexity of this 
process resides in post-processing optimisation of the 
contour. Stops and glitches often tend to distort the 
contour, introducing spurious changes in the profile. A 
post-processing procedure to smooth out such variations is 
often required in order to obtain reliable results. To extract 
pitch contour we used the ESPS get-f0 program derived 
from the algorithm presented in [IS]. The post-processing 
phase involves octave-jump removers and profile 
smoothen, as proposed in [2], applied at different levels 
and a fmal interpolation between voiced regions to obtain 
a continuous profile. 

2.4 Spectral emphasis 
It has been shown, especially by the influential work of 
Sluijter & van Heuven [15], that mid-frequency emphasis 
is one useful parameter in determining stressed syllables. 
Each nucleus segment has been handpass-filtered through 
FIR filters dividing it into three bands: from 0 to 500 Hz, 
from 500 to 2000 Hz and from 2000 to 4000 Hz. The RMS 
energy of each segmenthand pair was computed. 
Examining the distributions of prominent and non- 
prominent syllable energies in the frequency hands 
considered, we find that the two hands 0-500 Hz and 
2000-4000 Hz show a clear overlapping between 
prominent and non-prominent syllables, while the central 
band from 500 to 2000 Hz exhibits a clear separation 
between the two syllable categories. These results c o d i  
a strict dependence of syllable prominence to vowel mid- 
frequency emphasis. 

3 PROSODIC PARAMETERS 
This section examines the prosodic quantities that are the 
object of the study: stress, pitch accent and prominence. 

3.1 Stress detector 
The main correlates of syllable stress indicated in the 
literature are syllable duration and energy [l, 2, 16, 171. 
These works were further refined by Sluijter &. van 
Heuven, casting some light on the exact correlation 
between the different acoustic parameters. Their studies 
pointed out that the most reliable correlates of syllable 
stress are duration and mid-frequency emphasis. The 
presence of a high quantity of energy in the mid-to-high 
hand of vowel spectra, where the main formants reside, is 
one of the parameters indicating a strong possibility for 
syllable stress. Figure 2 shows prominent and non- 
prominent syllables as a function of log. syllable- 
normalised duration and log. RMS energy in the hand 
from 500 to 2000 Hz. There is strong evidence supporting 
Sluijter & van Heuven's ideas: stressed syllables exhibit a 
longer duration and greater energy in the vowel mid-to- 
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high-frequency band. A small overlapping region emerges 
quite clearly from the diagrams. Ideally it could he 
perfectly correct, because in the model presented here 
stress is only one of the parameters contributing to 
prominence, so the prominent syllables that are not 
captured by the process presented in this section may be 
identified correctly by the other parameter contributing to 
prominence, the pitch accent. , 

bm.cw . 
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Figure 2: Prominent and non-prominent syllables as 
a function of log-normalised duration and log- 
spectral energy in the band from 500 to 2000 Hz. 

Considering this general picture. it is possible to 
represent each set with a multivariate gaussian distribution 
using the centroid of the set and the sample covariance 
matrix as parameters of the distribution. In this way a 
discriminant function can be built and used for classifying 
general vectors. A similar procedure for designing a 
multivariate gaussian discriminator is described, for 
example, in [SI. The dashed line in figure 2 represents the 
decision threshold between the two sets. We tooh the log 
of the two acoustic parameters considered in figure 2 to 
adapt them to achieve a better fit with a gaussian 
distribution. 

3.2 Pitch accent detector 
There is a long tradition of studies dealing with intonation 
profiles and pitch accents [5, 131. The influential work of 
Pierrehumbert introduced a two-level categorisation of 
pitch profiles enriched by a wide combination of symbols 
and diacritics to represent all possible intonation contours 
and pitch accents. Unfortunately such a categorisation, as 
well as the famous ToBI labelling scheme, appean to be 
dificult to encode in an automatic system capable of 
reliably identifying such categories and combinations. 

Taylor [19. 20, 21, 221 proposed a different view of 
intonation events. Starting from a riselfalllconnection 
(RFC) model, he defined a set of parameters capable of 
uniquely describing pitch accent shapes and boundary 
tones, called the TILT parameter set. 

Following the model proposed by Taylor, the FO 
contour was first converted into an RFC model. The 
contour was divided into frames 0.025 seconds long, and 
the data in each frame was linearly interpolated using a 
Least Median Squares method to obtain robust regression 
and deletion of outliers [14]. Then every frame line was 
classified as rise, fall or connection depending on its 
gradient: subsequent frames with the same classification 
were merged into one interval and the duration and 
amplitude of the rise or fall section was measured. 

",i . 

I I 

Figure 3 A plot of prominent and non-prominent 
syllables as a function of overall syllable energy 
and intonational event parameters (the prominent 
set contains only syllable with EvAmp > 5Hz and 
EvDzrr > 25ms). 

Having obtained a compact RFC representation, it is 
possible to identify every intonational event in the FO 
contour. The view adopted here is to identify every 
possible event candidate to be a pitch accent, and evaluate 
the best combination, among the acoustic and TILT 
parameters. for identifying the actual pitch accents in the 
utterances. As described by Taylor [22], an intonational 
event that can be considered a candidate for pitch accent 
exhibits a rise followed by a fall profile. There are 
different degrees of such profiles and, in general, rise 
sections are more relevant for prominence. The actual 
pitch accents can be found by examining the event 
amplitude and if necessary some others parameters. 

2 3 5  I as 0 0 3  I 3 5  2 
Lm N m  Inn 
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Sluijter & van Heuven suggested that the pitch accent 
can be reliably detected by using the overall syllable 
energy and some measure of pitch variation. The event 
amplitude, that is part of the TILT parameter set, can be 
considered a measure of this variation, being the sum of 
the absolute amplitude of the rise and fall sections of a 
generic intonational event. Better results can be obtained 
by multiplying the event amplitude (EvAmp) by its 
duration (EvDur) and a further factor that expresses the 
relevance of the event along the utterance (EvRel). Figure 
3 shows a plot of prominent and non-prominent syllables 
as a fnnction of overall syllable energy and the product of 
event parameters on a log scale. Quite a clear correlation 
emerges among these parameters when identifying 
prominent syllables. As in the previous section, the dashed 
curve represents the threshold for discriminating between 
the two sets, computed, again, using a multivariate 
gaussian discriminator. 

3.3 Prominence detector 
By combining the two detectors described, on the basis of 
the methodological issues presented above, it should he 
possible to produce a reliable prominence detector. 
Prominent syllables can thus be identified either as pitch 
accented or stressed syllables. 

The parameters involved in the multivariate-gaussian 
detectors were estimated using a subset of TIMIT 
utterances, composed of 3637 syllables, spoken by 25 
different speakers. Table 1 shows the results of the 
prominence detector when applied to a test set extracted 
from TIMIT corpus. The test set consisted of 3643 
syllables, uttered by 26 different speakers of American 
English. The 26 speakers used to test the system are 
different from the 25 used for parameter estimation. 

I I Stressed I Pitch I Stressed+ I None I I Accented I Pitch Acc. I 
Prominent 1 650 1 53 I 280 I 271 
Non-Prom. I 314 I 41 I 50 I 1984 

Table 1: The results obtained bv a d v i n e  the orominence . .._ - . 
detector to the TIMIT test set considered in this study 

The prominence detector correctly classified 81.44% of 
the syllables as either prominent or non-prominent, with 
an insertion rate of 11.12% (false alarms) and a deletion 
rate of 7.44% (missed detections). 

4 CONCLUSIONS 
It is widely accepted in the literature that inter-human 
agreement, when manually tagging prominence in 
continuous speech, is around 80% [12]. The prominence 
detector presented here exhibits an overall agreement of 
81.44% with the data manually tagged by a native speaker; 
this performance is obtained without using any 
information apart from acoustic parameters derived 
directly fiom the utterance waveform. The results are 
comparable with those obtained by human taggers, so the 
presented prominence detector can be seen as a valid 
alternative to manual tagging for building large resources 
useful for language research and teaching. 
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